How to fit a Yaskawa Inverter as a replacement in the field
Auteur Gareth Green | Dernière modification 15/11/2024 par Stuga Engineer en cours de rédaction ⧼frevu-button-review-label⧽
How to fit a Yaskawa Inverter as a replacement in the field
Yaskawa, Inverter, TB0417 Fitting_Yaskawa_Inverter_GA700-topright.jpg
Version | Date | By | Description | Section | Notes |
---|---|---|---|---|---|
1 | 01/01/19 | GMG | Original Release | ||
2 | 23/07/20 | GMG | 50 / 300Hz Contactors on ZX3 / Microline | 2.7 | Change text to reflect removal of 50/300Hz contactors and use 50Hz signal for inverter 50Hz signal |
3 | 09/09/20 | GMG | V5 software upgrade on E100s | 2.6 | Add links to the process for installing the latest v5 software |
4 | 22/09/20 | GMG | Alternative for InvZro on E100 | 2.7 | Notes on how to use an alternative slice / IO channel for invZro
Added a test at the end to check InvZro is functional |
There are two versions of the upgrade kit for these parts:
Stock No | Description | Used On |
---|---|---|
R0015105 | Kit: Yaskawa Inverter Upgrade | All Autoflows
ZX3, Zx4, ZX5 from Z043
|
R0015105B | Kit: Yaskawa Inverter Upgrade - Same Cabinet | All Flowlines (with High speed ring upgrade)
ZX3, Zx4 up to Z042 All Microlines
|
The Yaskawa has a very similar outer body size to the Delta inverter. This means that it will fit into the same space that the Delta did. However, the hole centres are different. New holes will need to be drilled when first fitting a Yaskawa.
The Yaskawa is much taller than the Jaguar inverter. This may mean that the Yaskawa will not fit in the same space that the Jaguar did. We had the same problem when replacing Jaguar with Delta. There has been occasions in some of the older style ZX cabinets where the plastic trunking had to be re-routed to allow the room for the new inverter to fit.
This is a general diagram for cabling into the different machine types - more details for each machine will follow
When the inverter is fitted, the screen needs to be removed via the clip on the top. If you do not do this, the connector that is behind the screen can be bent out of place and the screen will not reconnect. The main cover that is at the front of the inverter needs to be removed with the screw at the bottom right. You then have to pinch either side of the inverter and lift the cover up.
You can then start wiring in cables from the original inverter setup as per table in the electrical drawing.
There will be some wiring that needs to be added. The table show all extra wiring that is needed for the inverter. The extra wiring will need to splice off existing cables in the electrical cabinet. The Yaskawa inverter needs more IO than the Jaguar. If there is a Delta fitted, you will find that most of the IO will already be in.
The Yaskawa inverter has also been programmed to monitor the temperature of the dump resistor. If the machine has a dump resistor with a thermal overload on it, this needs to be wired into the inverter. The alarm for this input is only in fault state when the input is high. This means if you do not have a thermal overload, leave the input terminal empty.
The Yaskawa inverter also has an output to say the spindle is at zero speed. This will need to be wired back into the main machine PLC or IO slices. This will then need a software update from Stuga.
· Timing issues on switching the double plunge configuration means that another IO channel is needed – OuB_InvDP (Y271). This output used to directly control the inverter, not the Y376, Y377, Y58, Y62
· Version 6.2514 or later needed
· Mapping required for Y271
Control System | Front End Version | Back End Version |
---|---|---|
Nextmove Mint | 5.4.4.0 (29/06/16) | 3.9997 (Feb 17) |
TwinCAT2 | 5.4.4.0 (29/06/16) | See GG |
TwinCAT3 | Any | 6.2514 (24/10/18) |
· Increase C1-01 accel time on 50Hz to 0.3
· Increase C1-05 accel time on 300Hz to 0.3
· Wire S1 to Module B Output Slice channel 1 (Y63)
· Wire S2 to Module B Output Slice channel 2 (Y63)
· Wire S3 and S4 to Module B Output Slice Channel 3 and 4 (Y376)
· 59a to 0v
· 24v link across 3 other inputs
· Inverter fault direct output (bypass the useless link through the overload relay)
· Inverter reset wire to output slice
· Inverter at zero wire to input slice channel 7 (X308)
· Resistor fault not working correctly, leave disconnected STO??! Inverter powers off on estop, works ok, leave links in HC, H1,H2
· Double link the double plunge outputs (Y271) 0> Channel 3 and 4
· Link inverter reset (X308) -> Channel 7
· Link inverter zero
· Latest software version
· Ensure inverter alarm is correct sense
· Parameter Invert300hz=1
· Check inverter display changes to 300hz / 50 HS when spindles are selected
· The phase monitoring device is not needed any more, but it is inactive, so can be left in place.
· Remove the cable 127 connecting SIG to the Delta inverter
· 3 new wires required, Y63 (Inv_300), Y271(Inv_Dp) and X308 (Inv_Zero)
· Y63, Y271 and X308 will need mapping in TwinCAT3 and adding to IO Ref
· Parameter Invert300Hz needs to be true
· Latest Software needs to be added to sort timings and use of Y63, Y271 and X308
Function | Wire Number / Colour | Yaskawa Terminal |
Mains In L1, L2, L3 | 26, 27,28 | L1, L2, L3 |
Motor Out U, V, W | 126, 127, 128 | T1, T2, T3 |
Input: Select 50Hz #1 | Y63
Wire to MC4 Ou7 |
S1 |
Input: Select 50Hz #2 | Link to S1 | S2 |
Input: Double Plunge #1 | Y271
Wire To MC4 Ou8 |
S3 |
Input: Double Plunge #2 | Link to S3 | S4 |
Input: Motor Run | Y358 | S5 |
Input: Inverter Reset | Y374 | S6 |
Input: Resistor Thermal Ovl | n/c | S7 |
Input: Motor 2 Safety | Link to M4 | S8 |
Inverter OK 24v | 24v (Yellow) | MC |
Inverter OK Output | X342 | MB |
Output 24v Supply | 24v (Yellow) | M1, M3 |
Output: Spindle At Zero | New Wire X308
To io slice MC5 Input channel 8 |
M2 |
Output: Motor 2 Safety | Link to S8 | M4 |
STO Override | Link | H1, H2, HC |
External 0v | 0v (White) | SC |
Braking Resistor | 1,2 | B1, B2 |
Inv_Zero,308,1,0,0,0,0,1,12,0
Inv_DP ,271,2,0,0,0,0,1,10,0
Inv_300 ,63,2,0,0,0,0,1,11,0
Electrical Highlights:
Function | Wire Number / Colour | Yaskawa Terminal |
Mains In L1, L2, L3 | 21B, 22B, 23B | L1, L2, L3 |
Motor Out U, V, W | 70B, 71B, 72B | T1, T2, T3 |
Input: Select 50Hz #1 | n/c | S1 |
Input: Select 50Hz #2 | n/c | S2 |
Input: Double Plunge #1 | Y271 -Wire To MC4 Ou8 | S3 |
Input: Double Plunge #2 | Link to S3 | S4 |
Input: Motor Run | Y358 | S5 |
Input: Inverter Reset | Y374 | S6 |
Input: Resistor Thermal Ovl | n/c | S7 |
Input: Motor 2 Safety | Link to M4 | S8 |
Inverter OK 24v | 24v (Yellow) | MC |
Inverter OK Output | X342 | MB |
Output 24v Supply | 24v (Yellow) | M1, M3 |
Output: Spindle At Zero | New Wire X308 -To io slice MC3B IN4 | M2 |
Output: Motor 2 Safety | Link to S8 | M4 |
STO Override | Add 2 relays as per diagram.
Relay control via Beckhoff safety slices |
H1, H2, HC |
External 0v | 0v (White) | SC |
Braking Resistor | 1,2 | B1, B2 |
Inv_Zero,308,1,0,0,0,0,19,5,0
Inv_DP ,271,2,0,0,0,0,19,6,0
Electrical Highlights:
Function | Wire Number / Colour | Yaskawa Terminal |
Mains In L1, L2, L3 | 21B, 22B, 23B | L1, L2, L3 |
Motor Out U, V, W | 70B, 71B, 72B | T1, T2, T3 |
Input: Select 50Hz #1 | n/c | S1 |
Input: Select 50Hz #2 | n/c | S2 |
Input: Double Plunge #1 | Y271 -Wire To MC2B Ou8 | S3 |
Input: Double Plunge #2 | Link to S3 | S4 |
Input: Motor Run | Y358 | S5 |
Input: Inverter Reset | Y374 | S6 |
Input: Resistor Thermal Ovl | n/c | S7 |
Input: Motor 2 Safety | Link to M4 | S8 |
Inverter OK 24v | 24v (Yellow) | MC |
Inverter OK Output | X342 | MB |
Output 24v Supply | 24v (Yellow) | M1, M3 |
Output: Spindle At Zero | New Wire X308 -To io slice MC2B IN4 | M2 |
Output: Motor 2 Safety | Link to S8 | M4 |
STO Override | Add 2 relays as per diagram.
Relay control via Beckhoff safety slices |
H1, H2, HC |
External 0v | 0v (White) | SC |
Braking Resistor | 1,2 | B1, B2 |
Inv_Zero,308,1,0,0,0,0,19,3,0
Inv_DP ,271,2,0,0,0,0,19,4,0
Function | Wire Number / Colour | Yaskawa Terminal |
Mains In L1, L2, L3 | 26, 27, 28 | L1, L2, L3 |
Motor Out U, V, W | 26B, 27B, 28B | T1, T2, T3 |
Input: Select 50Hz #1 | RY1 | S1 |
Input: Select 50Hz #2 | RY4 | S2 |
Input: Double Plunge #1 | Y271 -Wire To Output channel 8 on 1st IO slice | S3 |
Input: Double Plunge #2 | Link to S3 | S4 |
Input: Motor Run | Y9 | S5 |
Input: Inverter Reset | Y6 | S6 |
Input: Resistor Thermal Ovl | n/c | S7 |
Input: Motor 2 Safety | Link to M4 | S8 |
Inverter OK 24v | 24v (Yellow) | MC |
Inverter OK Output | X27 | MB |
Output 24v Supply | 24v (Yellow) | M1, M3 |
Output: Spindle At Zero | New Wire X308 - connect to Input channel 7 on 4th IO slice. | M2 |
Output: Motor 2 Safety | Link to S8 | M4 |
STO Override | Add 2 relays as per diagram. | H1, H2, HC |
External 0v | 0v (White) | SC |
Braking Resistor | 1,2 | B1, B2 |
INVDP ,616,2,8,7,0,0,1,7,1
InZRO ,608,1,8,14,0,0,2,11,1
Ensure SPDP is:
SPDP ,569,2,8,6,0,0,1,6,V
Delete any reference to IS300 input
Ensure the alarms are set for each individual spindle:
41,MOVL,False,SPIN1,True,0,4,Spindle 1 Alarm,True,False
42,MOVL,False,SPIN2,True,0,4,Spindle 2 Alarm,True,False
43,MOVL,False,SPIN3,True,0,4,Spindle 3 Alarm,True,False
44,MOVL,False,SPIN4,True,0,4,Spindle 4 Alarm,True,False
45,MOVL,False,SPIN5,True,0,4,Spindle 5 Alarm,True,False
46,MOVL,False,SPIN6,True,0,4,Spindle 6 Alarm,True,False
The MOVL should be High when the inverter is OK.
Remove any alarms relating to IS300 input
Download and install Yaskawa DriveWizard
Ensure the Yaskawa USB is connected to the PC
Find the COM port it is connected to (use Device Manager Ports) – this is usually COM3. If there are other connections on the same COM port, right click and uninstall them (EDG). This will need a reboot after uninstalling
Using DriveWizard, or via the physical keypad on the device, change the following parameters
No | Description | New Value |
C1-01 | 50Hz Accel Time | 0.5 |
C1-02 | 50Hz Decel Time | 0.5 |
C1-05 | 300Hz Accel Time | 0.4 |
C1-06 | 300Hz Decel Time | 0.4 |
Function | Wire Number / Colour | Yaskawa Terminal |
Mains In L1, L2, L3 | 60, 61, 62 | L1, L2, L3 |
Motor Out U, V, W | 53, 54, 55 | T1, T2, T3 |
Input: Select 50Hz #1 | Y5 (Hz50) | S1 |
Input: Select 50Hz #2 | Y5 (Hz50) | S2 |
Input: Double Plunge #1 | Y271 -Wire To Output channel 5 on 2nd Output slice (labelled 3) | S3 |
Input: Double Plunge #2 | Link to S3 | S4 |
Input: Motor Run | Y31 – extend to run directly
Remove the relay R58 and wires 51, 52 |
S5 |
Input: Inverter Reset | Y34 – Splice into servo reset – loops across each of the servo drives | S6 |
Input: Resistor Thermal Ovl | n/c | S7 |
Input: Motor 2 Safety | Link to M4 | S8 |
Inverter OK 24v | 24v (Yellow) | MC |
Inverter OK Output | X48
Remove wire 30A |
MB |
Output 24v Supply | 24v (Yellow) | M1, M3 |
Output: Spindle At Zero | New Wire X308 - connect to Input channel 8 on 1st IO slice (labelled 8). | M2 |
Output: Motor 2 Safety | Link to S8 | M4 |
STO Override | Add 2 relays as per diagram. | H1, H2, HC |
External 0v | 0v (White) | SC |
Braking Resistor | Br+, Br- | B1, B2 |
INVDP,616,2,8,12,0,0,18,1,1
InZRO,608,1,8,7,0,0,18,2,1
Edit the Column and row values for the following iodefs to put the all the spindle control on the spindle IO screen – makes testing much easier (items 8 and 9 in the csv)
INVOK,542,1,8,23,0,0,18,6,0
HZ50,578,2,0,4,0,0,18,7,D
HZ300,579,2,0,5,0,0,18,8,E
SMOT,558,2,8,15,0,1,18,3,Z
SRST,574,2,8,18,0,0,18,4,F
****** GLENN NOTE ******* On a Microline, check in IODef.mul for
CLSIP,607,2,9,3,0,0,2,3,X
CLSOV,608,2,9,4,0,0,2,4,Y
CLSOP,609,2,9,5,0,0,2,5,Z
change CLSOV from reference 608 to 618
See Microline Issue Saw Outfeed Clamp
Ensure the alarms are set for each individual spindle:
41,INVOK,False,SPIN1,True,0,4,Spindle 1 Alarm,True,False
42,INVOK,False,SPIN2,True,0,4,Spindle 2 Alarm,True,False
43,INVOK,False,SPIN3,True,0,4,Spindle 3 Alarm,True,False
44,INVOK,False,SPIN4,True,0,4,Spindle 4 Alarm,True,False
45,INVOK,False,SPIN5,True,0,4,Spindle 5 Alarm,True,False
46,INVOK,False,SPIN6,True,0,4,Spindle 6 Alarm,True,False
47,INVOK,False,SPIN7,True,0,4,Spindle 7 Alarm,True,False
The INVOK should be High when the inverter is OK.
Remove any alarms relating to IS300 input
Download and install Yaskawa DriveWizard
Ensure the Yaskawa USB is connected to the PC
Find the COM port it is connected to (use Device Manager Ports) – this is usually COM3. If there are other connections on the same COM port, right click and uninstall them (EDG). This will need a reboot after uninstalling
Using DriveWizard, or via the physical keypad on the device, change the following parameters
No | Description | New Value |
C1-01 | 50Hz Accel Time | 0.5 |
C1-02 | 50Hz Decel Time | 0.5 |
C1-05 | 300Hz Accel Time | 0.5 |
C1-06 | 300Hz Decel Time | 0.5 |
Item | Tick |
---|---|
Inverter Replaced | |
If the old braking resistor is reused, test the resistance matches the stated value.
If an ohmmeter is not available, ensure it is not a dead short to ground or open circuit |
|
Phase Detect Relay Removed | |
M4 to S8 Link | |
Inverter OK signal bypasses overload relay and configured so InvOK signal is High when OK | |
Inverter FWD signal wired in | |
Inverter 50Hz select wired in and link | |
Inverter Double Plunge Input and link wired in | |
Inverter Reset Input Wired In | |
Inverter At Zero Output wired back to controller | |
STO Relays Fitted and wired | |
Mains Connections and Earth Safely wired | |
Front End updated if required | |
Back End updated if required ...If this is a Nexmove, set the YASKAWAINVERTER parameter to _TRUE
|
|
IO Def reconfigured | |
Alarms Reconfigured | |
Yaskawa Drive Wizard installed | |
Check Inverter accel and decel parameters | |
Check Inverter DC Injection parameters set to zero | |
Test InverterOK signal (high when OK)
Ensure alarm triggers on InvOK low |
For this machine type, testing a spindle should follow this process
1. Select a spindle 1 or 2
2. Set HZ50 to run
3. Set Hz50 off
1. Select a spindle 3 to 7
2. Set HZ300
3. Set SMOT to accellerate
4. Ensure InZRO goes off and InvOK stays on
5. Reset SMOT to decelerate
6. Reset HZ300
7. Reset Spindle
Same as single, but select double plunge spindles and set InvDP to tell inverter to double the output power
Test InvZro input to system is low when inverter running, high when spindle stops en none 0
Draft
Vous avez entré un nom de page invalide, avec un ou plusieurs caractères suivants :
< > @ ~ : * € £ ` + = / \ | [ ] { } ; ? #