Commissioning - Z-Block Calibration

Commonly used during sawing on Z transoms, the Z block operation is used to fasten the profile, making sure it does not move during sawing.

Difficulty Medium

Duration 30 minute(s)

Contents

Introduction

Step 1 - Turret A - Find Position 1 on the Turret

Step 2 - Check the Binary Count of the Turret

Step 3 - Repeat for the outfeed turret

Step 4 - Check the Labelling is correct

Step 5 - Check Turret Home for Infeed and Outfeed turret

Comments

Introduction

Commonly used during sawing on Z transoms, the Z block operation is used to fasten the profile, making sure it does not move during sawing. There are 6 possible states the z block can be in. Each of these can have a different length of protrusion for different profiles.

12 x M8 Screws 12 x M8 Nuts 12 x wire numbers 1 - 6

Step 1 - Turret A - Find Position 1 on the Turret

On the Service > IO tab use output Y214 to turn the infeed turret.

Step 2 - Check the Binary Count of the Turret

Each turn of the turrets will change the binary state of the inputs X210, X220 and X212.

Use the table in the picture to ensure the count goes 1-2-3-4-5-6 and back to 1 $\,$

Value	Binary	Turret I	Turret O
1	001	210	211
		220	221
		212	213
2	010	210	211
		220	221
		212	213
3	011	210	211
		220	221
		212	213
4	100	210	211
		220	221
		212	213
5	101	210	211
		220	221
		212	213
6	110	210	211
		220	221
		212	213

Step 3 - Repeat for the outfeed turret

Use Y215 to pulse the outfeed turret

Each turn of the turrets will change the binary state of the inputs X211, X221 and X213

Use the table in the picture to ensure the count goes 1-2-3-4-5-6 and back to 1 $\,$

Value	Binary	Turret I	Turret O
1	001	210	211
		220	221
		212	213
2	010	210	211
		220	221
		212	213
3	011	210	211
		220	221
		212	213
4	100	210	211
		220	221
		212	213
5	101	210	211
		220	221
		212	213
	110	210	211
6		220	221
		212	213

Step 4 - Check the Labelling is correct

The turrets should be labelled 1-6 with pneumatic pipe markers The turret position should be written on the top of each turret in permanent marker

...Take care to ensure the number match to the actual positions fed back from the binary inputs

Step 5 - Check Turret Home for Infeed and Outfeed turret

X214 InF_ZIHome should signal high (red) when the infeed turret is home X215 InF_ZOHome should signal high (red) when the outfeed turret is home